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The stability of a horizontal fluid layer when the thermal (or concentration) 
gradient is not uniform is examined by means of linear stability analysis. Both 
buoyancy and surface-tension effects are considered, and the analogous problem 
for a porous medium is also treated. Attention is focused on t,he situation where 
the critical Rayleigh number (or Marangoni number) is less than that for a linear 
t,hermal gradient, and the convection is not (in general) maintained. The case of 
constant-flux boundary conditions is examined because then a simple application 
of the Galerkin method gives useful results and general basic temperature profiles 
are readily treated. Numerical results are obtained for special cases, and some 
general conclusions about the destabilizing effects, with respect to disturbances 
of infinitely long wavelength, of various basic temperature profiles are presented. 
If the basic temperature gradient (considered positive, for a fluid which expands 
on heating, if the temperature decreases upwards) is nowhere negative, then the 
profile which leads to the smallest critical Rayleigh (or Marangoni) number is one 
in which the temperature changes stepwise (at  the level at which the velocity, if 
motion were to occur, would be vertical) but is otherwise uniform. If, as well as 
being non-negative, the temperature gradient is a monotonic function of the 
depth, then the most unstable temperature profile is one for which the tempera- 
ture gradient is a step function of the depth. 

1. Introduction 
The determination of the criterion for the onset of instability as convection in 

a horizontal layer of fluid heated uniformly from below is a classical problem 
associated with the names of BBnard and Rayleigh. The copious literature on 
this problem and its extensions has been reviewed many times, notably by 
Chandrasekhar (1961), Segel (1966), Berg, Acrivos 8: Boudart (1966), Brindley 
(1967), Spiegel (1971, 1972), Schechter & Velarde (1974) and Koschmieder 
(1974). The analogous problem in a saturated medium is also of interest (Nield 
1968). In  general, convection appears when a certain dimensionless parameter 
exceeds its critical value. This parameter is a Rayleigh number (thermal or 
solutal) when the convection is induced by buoyancy effects due t>o variations 
in density and is a Marangoni number when surface-tension variations induce the 
conveotion. 

In the classical problem the basic temperature dist,ribution is the steady-state 
(conduction) distribution, the temperature gradient being constant. However, 
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in nisny situations (in particular, in geophysical contexts) the stability or in- 
stability of a fluid in the presence of a nonlinear (and usually time-dependent) 
temperatwe profile is of practical importance. An early study in this field was 
that of llnlurkar (1937), who investigated the stability of a radiating layer of 
air near the ground. Often the nonlinearity of the temperatnre profile is due to 
rapid heating (or cooling) a t  ib boundary. The experiments of Graham (1  933) and 
Chanclra (1938) attracted attention because they found that in thin layers a form 
of convection appeared at values of the overall Rayleigh number lower than the 
critical value predicted by the classical theory. Sutton (1950) noted that a likely 
explanation of this phenomenon was the non-uniformity of the temperature 
gradient in such layers. 

Further theoretical studies of instability with a nonlinear basic temperature 
profile were made by Morton (1957), Goldstein (1959) and Lick (1965). I n  these 
stitdies, as in that by Foster (1965), the emphasis was on calculating the rates of 
growth of disturbances of vaiious wavelengths. Foster noted that the assumption, 
made in the previous studies, that the temperature distribution could be taken as 
quasi-static led to inaccurate estimates of the growth rates, and showed how this 
difficulty could be avoided. The validity of the quasi-static assumption was fur- 
ther discussed by Robinson ( 1967) and by Gresho & Sani (1971). The quasi-static 
assumption was also made hy Currie (1967), who showed that, with a piecewise 
linear profile, the onset of coiivection could occur a t  a Rayleigh number consider- 
ably smaller than the critical value for a linear profile. Analysis similar to that 
of Currie was performed by Ogura & Iiondo (1970), by Takaki & Yoshizawa (1 972) 
and by Kondo, Kimura & Nishimoto (1972). The effects of modulating the basic 
temperature profile with time have been considered by several authors, including 
Gershnni & Zhukhovitskii ( 1963), Venezian (1969), Rosenblat & Herbert (1970), 
Roseiiblat & Tanaka (1971), Burde (1971) andYih & Li (1972), and the effect of 
changing the mean temperature was discussed by Krishnamurti (1 068). The 
onset of convection with a pu-abolic basic temperature profile was first treated by 
Sparrow, Goldstein & Jonsson (1964), and subsequently by Roberts (1967). Global 
stability of time-dependent profiles has been treated using the energy method 
by Homsy ( 1  973). 

In all the above papers thc agency responsible for the convection was buoyancy. 
A problem similar to that trcated by Cnrrie (1967), but with convection driven by 
surface-tension gradients rather than by buoyancy forces, was analysed by Vidal 
& Acrivos (1968). They failed to note that convection could occur a t  a Marangoni 
number less than that predicted for a linear profile because they defined their 
Marangoni number in terms of the maximum temperature gradient instead of the 
mean one. When we calculate the overall Alaraiigoni number from their data, we 
find that i t  goes through a minimum, just as the Rayleigh number does in figure 2 
of Currie (1967). The surface-tension problem with a parabolic basic temperature 
profile, for which the critical Marangoili number is less than that for a linear 
profile, \vss treated by Debler & Wolf (1970). 

Little work has been dorle on the onset of convection (induced by buoyancy) 
in a saturated porous medium with a nonlinear basic temperature distribution 
since the time of the ad hoc investigations by Rogers & Morrison (1950), Rogers, 
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Schilberg & Morrison (1951) and Rogers (1953). However, a parabolic distribu- 
tion was discussed by List (1965). 

Once we accept the fact that a piecewise-linear basic temperature profile 
can lead to convection at an overall Rayleigh number less than the critical value 
for a completely linear profile, the question arises as to which temperature profile 
gives the absolute minimum. If we allow an unrestricted choice of profile the 
question is trivial, because Sparrow et al. (1964) showed that the critical overall 
Rayleigh number for a parabolic profile arising from a uniform volume distribu- 
tion of heat sources could be arbitrarily small. However, if we restrict the profiles 
to ones in which the gradient does not change sign, the answer is not immediately 
obvious. 

In  the present paper we attempt to  find the answer in this case. We examine 
the stability (with respect to small disturbances) of a layer in the presence of a 
‘frozen’ basic temperature profile. Since we are not concerned with the magni- 
tude of the growth rate of the disturbances, but only with whether or not they 
grow a t  all at any stage of the evolution of the basic temperature profile, the argu- 
ments of Foster and others against the use of ‘frozen’ profiles are not applicable. 
Even with this simplification, we are left, for general boundary conditions, with 
a formidable problem, because we not only need to minimize a Rayleigh or 
Marangoni number with respect to variation of the horizontal wavenumber of 
the disturbances, but also have to consider a whole class of basic temperature 
profiles. Fortunately, for the case of constant-flux (of heat or solute) conditions 
a t  both horizontal boundaries, the small wavenumber approximation is applic- 
able, and as a consequence a simple Galerkin method turns out to give some 
useful results. (Convection does occur a t  small wavenumbers in situations such 
as that discussed by Sasaki 1970.) 

From the work of Davis (1972) it  appears that, when the overall Rayleigh 
number R is less than the critical value R, for a linear profile, the disturbance 
must ultimately decay. Hence, if one does have instability with R < R,, the 
convection will be transitory. For some purposes it may not matter whether or 
not such transient convection occurs, but in some industrial processes it is vitally 
important to ensure that convection does not occur at any stage. I n  fact, it is 
hoped that the virtual absence of buoyancy effects in a space vehicle will enable 
improved products to be made. However, if the fluid has a free surface then, as 
experiments on Apollo 14 and 17 flights (reported by Grodzka & Bannister 1972; 
and Bannister et al. 1973) have shown, convection can still be induced by surface- 
tension effects even if buoyancy forces are absent, and hence it is of importance to 
calculate the critical Marangoni number below which convection cannot occur. 

In  succeeding sections we discuss, in turn, buoyancy effects in a fluid layer, 
surface-tension effects in a fluid layer and buoyancy effects in a layer of a satu- 
rated porous medium. In  5 5 we present some general conclusions. 
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2. Buoyancy effects in a fluid layer 
The procedure for obtaining the linearized perturbation equations is now well 

known, so we omit the dehails (which are discussed fully by Chandrasekhar 
1961, chap. 2). We find i t  convenient to follow the exposition of Finlayson (1972, 
$ 6.2) .  The fluid is assumed t o  be bounded by horizontal planes a distance d apart. 
At each boundary the basic temperature is assumed uniform, that of the lower 
boundary being AT greater bhan that of the upper boundary. Cartesian axes are 
t8aken with origin on the lower boundary and the z axis vertically upwards. For 
disturbances having horizontal wavenumber a, the vertical component of the 
velocity and W the perturbation temperature T (the total temperature minus the 
basic temperature To) are related by the following equations (which are derived 
from the Navier-Stokes and heat-conservation equations for a Boussinesq fluid) : 

a[(Dz-a2) W]/at = -RiaT+ (D2-a2)2 W ,  
Pr a Y / a t  = ( D2 - a2) T + Rkaf ( z )  W, 

(2.1) 
( 2 . 2 )  

where D = a/&, f(z) = ( - d /AT)  dT,/dz, R = gad3AT/v~  is the Rayleigh number, 
Pr = v/K is the Prandtl number, gis the gravitational acceleration, a is the volume 
coefficient of thermal expansion, v is the kinematic viscosity and K is the thermal 
ciiffusivity. The time scale has been chosen to be d2/v and the length scale to be d ,  
so that the lower and upp~:r boundaries are z = 0 and z = 1 respectively. The 
non-dimensional temperature gradient f ( z )  must satisfy 

fO1f(Z)dZ = 1. 

The scales for TY and T have been chosen such that R appears symmetrically in 
the two equations, rather than in just one or the other. Though this choice is not 
essential for our present purpose, it enables a variational principle to be estab- 
lished for the present set of equations (and appropriate boundary conditions) 
and the adjoint set, and as -Finlayson (1972, 9 6.4) shows, this leads to the conclu- 
sion that the eigenvalue R is stationary in the Galerkin method which we shall 
apply below. 

As usual, we consider boundaries which are either rigid (so that TI7 = D W = 0 
on the boundary) or stress free (so that W = D2W = 0 there). For the reason given 
above, we confine our attention to boundaries on which the basic heat flux is kept 
constant, so that DT = 0 on each boundary. 

We now apply the Galerkin method as described by Finlayson (1972, $6 .2) .  
IVe shall find that we can get an accurate value for the critical value of R for 
certain cases by taking a single term in the expansions for W and T, i.e. we let 
HV = A W ,  and T = BT,, .#here and T, are suitably chosen trial functions. 
Further, we take advantqe of the fact that  oscillatory convection is ruled out 
for a constant-property fluid subject to a single agency capable of causing in- 
stability, because there is then no mechanism able to produce the oscillations. 
The neutral-stability soluLion is thus one for which the time derivatives in the 
differential equations (2.1) and (2.2) are zero. These equations then yield 

Ria( W T )  = - ( (Dz  W ) z  + 2a2 ( B  W)2 + a4 Wa), 
Rka(Wf(z) T )  = ((DT)2+a2T2).  
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Here angular brackets denote integration across the layer. We have performed 
some integrations by parts and used the boundary conditions. Substituting 
IP = A W ,  and T = BT,, eliminating A and B and dropping the suffixes, we get 

((D2JV)2 + ~ C C ~ ( D W ) ~  + a4W2) ( (0T)z- t  a2T2) 
a2 ( W T )  ( W f ( z )  T) R =  

We now select trial functions satisfying the appropriate sets of boundary con- 
ditions. We consider two cases. 

2.1.  Both boundaries rigid 

The boundary conditions are 

W = D J V = D T = O  at z = O , l .  
These are satisfied by 

Equation (2 .3 )  then yields 
W = ~ ' ( l - z ) ~ ,  T = 1 .  

R = 24( 1 +&a2 + & u ~ ) / ( ( z ~  - 2z3 + z*),f(z)). 

For any givenf(z), R attains its minimum when a = 0, a.nd its minimum value is 

R, = 24/ ( (z2  - 2z3 +z4)f(z)). ( 2 . 5 )  

For a linear profile,f(z) = 1 and R, = 720.  This is in fact the known exact value 
for R,. 

As an example (chosen for reasons discussed in 95), for the piecewise-linear 
profile given by 

we have R, = 720/ (6s4-  15e3+ 1 0 ~ ~ ) .  (2 .7 )  

As E increases from 0 to 1 ,  R, decreases from + 00 to a minimum value of 

720/1.198 = 601.1 a t  e = 0.724 

and then increases to 720 a t  e = 1 .  A similar variation of R, with E was found by 
Currie (1967) for the case of constant-temperature rather than constant-flux 
boundaries. I n  his case the minimum was attained a t e  = 0.72 and the minimum 
value was 1340, a reduction by a factor 1.274 from the well-known value of 1707.8, 
a t  E = 1, for a linear profile. Compared with the constant-flux condition, the 
constant-temperature condition is more restricting, so that in the latter case 
there is a greater potential for reduction of the eigenvalue when the buoyancy 
forces are applied in a restricted area, away from one of the boundaries. 

One might expect that an even greater reduction might be possible if the 
buoyancy forces were applied in the middle of the layer, away from both bound- 
aries. This is indeed so. For example, for the step-function profile in which the 
basic temperature drops suddenly by an amount AT a t  z = E but is otherwise 
uniform we have 

f@, = &-d,  (2.8) 
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where S denotes the Dirac delta function. Now 

R, = 720/(s2 - 21~3 + ~ 4 ) ,  (2.9) 
which has a minimum value of 720 x 
between the boundaries. 

= 384, attained a t  e = Q, i.e. midway 

2.2. Lower boundary rigid, upper boundary free 

The boundary conditions are now 

I W = D W = D T = O  a t  z = O ,  

F V = D 2 W = D T = 0  a t  z = l .  

These are satisfied by 
TY = Z2(1-Z)(3-2Z), T = 1. 

(2.10) 

Again R attains its minimum when a = 0, and 

R, = 48/( (3z2 - 5z2 + 2z4)f(z)). (2.11) 

Whenf(z) = 1, R, = 320. Again the approximate Galerkin method has given the 
known exact value of R, for- a linear profile. 

For the piecewise-linear profile given by (2.6) (which approximates the profile 
for heating from below), 

(2.12) 

This has a minimum of 320/1.094 = 292.5, attained a t  e = 0.821 (further away 
from the rigid boundary than for rigid-rigid conditions). For the piecewise- 
linear profile given by 

A', = 960/(20e2 - 2 k 2 +  8 ~ ~ ) .  

(2.13) 1 0,  O < Z < l - € ,  

e-1, l - s  < 2 < 1 
f(2) = [ 

(approximating the profile for cooling from above), we have 

11, = 960/( 1 0 ~  - 15e3 + 8~~). (2.14) 

This has a minimum value of 320/1-270 = 252.0, attained when s = 0.638 and 
thus 1 -e = 0.362. Comparing the last two results, we see that R, is less when 
the buoyancy force is applied near the less restrictive boundary (the free one) 
rather than the more restri8:tive boundary (the rigid one). 

For tJhe step-function profile witlif(z) given by (2.8) we have 

R, = 48/(3e2- 5e3+ 2s4), 

which has a minimum value of 320/1-733 = 184.6, attained at E = 0.578. Thus, 
as we would expect, the most destabilizing step-function profile has the step 
closer to the free boundary than to the rigid one. 

3. Surface-tension effects in a fluid layer 

buoyancy forces R = 0, and in place of (2.1) and (2.2) we have 
Again we closely follow l,he treatment by Finlayson (1972). In  the absence of 

a[(  D2 - a2)  TV]/at = (D2 - u ~ ) ~  W ,  
P r  aT/at = (Da - a2) T + Jftaf(~) W, 

(3.1) 

(3.2) 



The  onset of transient convective instability 447 

where JI = udAT/pK is the Marangoni number, p is the dynamic viscosity and 
(T is the rate of decrease of surface tension with increasing temperature. The 
boundary conditionsfor a rigid bottom and a free upper surface with temperature- 
dependent surface tension, each subject to constant heat flux, are 

( 3 . 3 )  

The trial functions W, = ( 1  - z )  z2 and T, = 1 satisfy all the boundary conditions 
except one, namely D2 W + M h T  = 0 a t  z = 1, and a residual from this equation is 
included in a residual from the differential equations. For neutral stability we may 
again put a/at = 0;  then (3 .1)  and (3 .2)  yield 

I TV = DW = DT= 0 at x = 0, 

W = DzW+MBaT = DT = 0 at x = 1 .  

((D2W)'+ 2a2(D W)' +a4W2) + MBuD W (  1 )  T(1)  = 0,  

( ( D T ) 2 + ~ 2 T 2 )  = M h ( W f ( z )  T ) .  

When we substitute W = AW, and T = BT,, eliminate A and B, and drop the 
suffixes, we have 

- ( ( D 2 W ) 2 + 2 ~ 2 ( D W ) 2 + ~ 4 W 2 ) ( ( D T ) 2 + ~ 2 T 2 )  
a2DW(1) T ( l ) ( W f ( z )  T )  

M =  7 

and on substituting our trial functions we get 

M = 4( 1 ++z2 +&a4),l((z2 - z3 ) f (2 ) ) .  

Thus J I  is least when a = 0 and 

M, = 4/((Z2-Z3)f(Z)).  ( 3 . 4 )  

For the linear profile, f(z) = 1 andM, = 48, the known exact value for the critical 
Marangoni number for this case. For the bottom-heating piecewise-linear 
profile given by (2 .6)  we have 

This has a minimum of 48 x a = 48/1.0535 = 45TQ5, attained at e = $. For the 
top-cooling piecewise-linear profile given by (2.13) we have 

( 3 . 6 )  

This has a minimum value of 48/1*380 = 34.79. As we expect, cooling from above 
is more effective than heating from below in causing instability in this case. Our 
approximate values of H, given by ( 3 . 6 )  may be compared with the numerical 
data of Vidal & Acrivos (1968) .  We see from table 1 that ( 3 . 6 )  gives upper bounds 
on M, which are good approximations for e 2 0-4 (a range which includes the 
value giving the minimum value of M,) because then the exact critical wave- 
number differs little from zero. 

Debler & Wolf (1970)  have considered the problem with a parabolic distribu- 
tion in which the basic temperature gradient is zero at the lower boundary, 
corresponding to f(z) = 22 here. Equation ( 3 . 4 )  now gives M, = 40, the value for 
the Marangoni number given by their equation (6). (The corresponding curve in 
their figure 1 is slightly inaccurate.) For comparison the 'inverted' parabolic 

M, = 48/ (4c2-  363). ( 3 . 5 )  

M, = 48/(3s3 - 8e2 + 6s). 
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E 

0 
0.05 
0.1 
0.4 
0.5 
0.8 
1.0 

JrC for a = 0 

00 

169.16 
91-78 
36.58 
34-91 
39.47 
48.00 

&Ic a, 
- co 

104.29 3.3 
64.56 2.7 
36.0 1.0 
34.9 0.1 
39.5 0.001 
48.0 0 

TABLE 1. Values of the critical Marangoni number M, and the corresponding wavenumber 
a, for various values of the thermal depth parameter 8 when the lower boundary is rigid 
aid the heat flus is constant at each boundary. Column 2 contains the approximate values 
of M,  given by (3.6), which are ,n fact the exact values of A! when a = 0. Columns 3 and 4 
contain the values calculated by Viclal & Acrivos (1968), with the Marangoni number 
defined as d i l T / p ~ ,  that is, their Marangorii number multiplied by E .  

profile with f ( x )  = 2( I - z )  gives A& = GO and, as expected on physical grounds, 
is less destabilizing. 

For the step-function profile with f(z) = 6(z - c), we have 

JfC = 4/(€2 - €3), 

which has a minimum valul: of 4s x 
accord with our expectatior,. 

=:27, attained a t  6 = g, values again in 

4. Buoyancy effects in a saturated porous medium 
The appropriate time-independent equations are 

( 1 3 2 - ~ 2 )  1.V = - R b T ,  

(D2-u2) T = - R h f ( z ) I Y ,  

where R now denotes the q-lantity gaKdATlvK, where K is the permeability of 
the medium. 

For impermeable boundaries through which the heat flux is constant we have 

R ' = D T = O  a t  z = O , i .  (4.3) 
With trial functions JK = z(1-z )  and TI = 1, which satisfy the boundary con- 
ditions, the Galerkin method yields 

giving h! = (2  + $')/((z - ~ ~ ) ) f ( z ) ) .  

Once again, the minimum eigenvalue is obtained with a. = 0, and 

R, = 2 K ( Z  - z 2 ) ) f ( 4 ) .  (4.5) 
For the linear profile, f(z) = 1 and R, = 12, the known exact value. 

For t,lie piecemise-linear profile given by (2.6), 

R, = 1 2 / ( 3 ~ -  2c2), 
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which has a minimum value of 12 x 3 = lo$, att'ained a t  e = 2. For the step- 
function profile with f(z) = 6(z - e) ,  

R, = 2/(s-e2), 

which has a minimum value of 12 x + = 8, a t  s = 4. 
On the other hand, if the upper boundary is a t  constant pressure rather than 

being impermeable, while the lower is still impermeable, the boundary con- 
ditions are 

W = D T = O  at z = O ,  D W = D T = O  a t  x = l .  

These are satisfied by J3 = 22-x2 and Tl = I. Equation (4.4) still holds, and 
gives 

R = (2  + :C.Z')/( (22 - z 2 ) f ( z ) ) ,  

so that R,= 2/((22-~2)f(z)). 

For f(z) = 1, we have R, = 3, the known exact result for the linear profile. 
For the piecewise-linear profile given by (2.6) we have 

R, = 6/(36-s2). 

This decreases monotonically as e increases, attaining its minimum value of 3 
when e = 1, so that for no value of e does this piecewise-linear profile give a value 
for R, less than that for the linear profile. 

For the step-function profile with f(z) = 6(z - e) ,  we have 

R, = 2/(2c-s2), 

which has a minimum value of 2, a t  e = 1. Since the constant-pressure condition 
arises when the porous medium is overlain by a reservoir of fluid, so that the 
upper boundary condition is not a very restrictive one, these results also are as 
we would expect. 

5. General results and discussion 
The single-term Galerkin procedure provides a quick method for obtaining 

the above results, but in order to demonstrate that they are exact in the limit as 
the wavenumber a tends to zero, we show how they can be obtained using formal 
expansionsin powers of the small parameter a. We do this for the case of a viscous 
fluid confined between rigid boundaries; the procedure for the other cases is 
similar. 

1 w = W0+aW,+a2W2+ ..., We write 

T = T,+aT,+a2T2+. .., 
RB =W,+&,+a2W2+ ... 

(where the and T, are now used in a sense different from that in the preceding 
sections), and substitute in the time-independent form of (2.1), (2.2) and (2.4). 
The zero-order system of equations, 

D4W0 = 0, D2To = 0, (5.2a, b )  

W, = DW, = DT, = 0 at z = O , l ,  ( 5 . 2 ~ )  
F L M  71 29 
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has.the solution 

The order-a system, 
Vi = 0, To = constant. 

D4M’1 = BOTO, D2T, = -g0fWo, 

T V ,  = Dt& = DT, = 0 a t  z = O , l ,  

yields the solution (with tht: arbitrary factor suitably chosen) 

if 

JV, =: 2 2  - 223 + 24, T, = constant 

.%‘oTo = 24. 

(5.3) 

The requirement that TI lie orthogonal to To, in the sense that (TOT,) = 0, 
implies that TI = 0. The orcler-a2 system, 

D4W2-2D2F& = 9oT,+91To, (5.6a) 

D2T,-To = -9,JFV,-9a,j14i7 (5 .6b)  

W, = OW, = DT, = 0 a t  z = 0,1, ( 5 . 6 ~ )  

together with the requirement that (W,W2) = 0, yields 

w, = 0, 9, = 0. 

Further, when we integrate (5 .6b )  from z = 0 to z = 1, and use the boundary 
conditions on T,, we obtain 

Using the results (5.4) and (5 .5)  we then have 

(To) = 9 o ( f W , ) -  

R + 9; = 2 4 / ( ( ~ ~ - 2 ~ ~ + z ~ ) f ( z ) ) .  

This is the same expression as in ( 2 . 5 ) .  We now see that the Galerkin method 
yielded precise values because the trial functions used were, to the lowest order 
in a, exact. 

The expansion procedure can be continued to find B,, g3, . . . . Since 9, = 0, 
the minimum value of Rh is attained at a = 0 if 9, > 0. The class of functions 
f(z) for which 9, > 0 include,sf(z) = 1 andf(z) = 6(z - &), as we find when we per- 
form the necessary calcu1ai;ions. For the linear profile this merely confirms 
what we already knew, but now we conclude that the value 384 which we ob- 
tained in 9 2.1 is indeed the c pitical Rayleigh number for the step-function profile 
with rigid constant-flux boundaries. 

For other functions f(z),&?! will not be positive, and Rh will attain its minimum 
at some non-zero value of a. However, since instability will occur if the Rayleigh 
number exceeds 9: for a t  least some disturbances (namely those with very small 
wavenumber), the value given by our approximation will be an upper bound on 
the critical Rayleigh number for the onset of instability when disturbances of all 
wavenumbers are considered. In  many cases this upper bound will be close to  the 
precise value. The available evidence indicates that the approximation is good 
for the piecewise-linear profiles discussed above provided that the discontinuity 
in gradient does not occur close to a boundary. The degree of accuracy is likely 
to be poor whenf(z) becomes negative somewhere in the range [O, 13, because we 
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expect from physical considerations that W then could have a node within that 
range, so that convection cells could occur in more than one layer, as in some situa- 
tions involving ‘penetrative convectmion ’, and it may then be more appropriate 
to use a Rayleigh number based on the maximum temperature difference rather 
than that defined in this paper. However, we believe that when f(z) 2 0 for all z 
in [0,1] our approximate results are likely to be qualitatively useful. 

For such f(z), we now return to the question, raised in the introduction, as to 
which particular f(z) gives the minimum value of R, (or B,). We notice that, in 
each of the cases considered,f(z) appeared in the term ( Wf(z) T )  in the denomina- 
tor  of the expression for R. Also, we were able for small wavenumbers to use the 
same trial functions for all f(z). Since ( Wf(z)  T) < ( WT),,, because (f(z)) = 1, 
and since the upper bound is attained with f(z) = 6(z - z tn) ,  where z, is the value 
of z a t  which WT is a maximum, we conclude that the most unstable basic tem- 
perature profile (for which f(z) 0 everywhere) is the step-function profile for 
which the step occurs a t  the level a t  which W is a maximum (since T is constant 
in our approximation). At this level the horizontal component of the velocity, 
which is proportional to D W ,  is zero, i.e. the velocity is vertical. Thus, for ex- 
ample, for the case of two rigid boundaries through which the heat flux is constant, 
we deduce that the value of 384 which we found is a lower bound on the critical 
Rayleigh number, with respect to disturbances of infinite wavelength, for any 
basic temperature profile with temperature gradient non-negative everywhere. 
Hence the condition R < 384 is a sufficient condition for stability, with respect to 
disturbances of infinite wavelength, for all such temperature profiles. Similar 
conclusions hold for the other cases considered. 

Sometimes, as when the layer is heated from below at a constant rate, we 
know that the functionf(z) is not only non-negative but also decreases (or, for the 
case of cooling from above, increases) monotonically. We are thus interested in 
knowing which temperature profile gives the least R, subject to f(z) 0, 
Df(z) < 0 (almost everywhere). We claim that the piecewise-linear profile with 
f(z) given by (2.6), withe suitably chosen, is the appropriate one (for disturbances 
of zero wavenumber, at least). In  order to demonstrate this, we first note the 
theorem of Weierstrass, which tells us that any continuous function (such as our 
basic temperature) can be approximated arbitrarily closely by a piecewise-linear 
function (with multiple segments). Hence we can approximate the temperature 
gradient function by a multiple-step function 

g(z)  = gi when zi < z < zi+l for i = 0,1, ..., n, (5-7) 

where z,, = 0, z,+~ = 1 and the gi are constants. Denoting WT by h(z) and letting 

j; h(2’) dz‘ = H(z) ,  

we have, on splitting the range of integration into subintervals ( Z ~ , Z ~ + ~ )  and 
integrating by parts over each subinterval, 
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Also, since g(z) must satisfy the condition ( g ( z ) )  = 1, we have 

76 c gi(zi+l-zi)  = 1. 
i = l  

(5.9) 

For given zi and h(z) (and hcnce given H(z , ) )  the problem of maximizing the 
expression (5.8) subject to the constraint (5.9) is a linear-programming problem. 
A standard theorem (the basis of the simplex algorithm for the solution of such 
problems) states that the maximum will be obtained when all but one (since there 
is one constraint) of the gi arc zero. Since we are supposing that the gi are mono- 
tonically decreasing, the non-zero gi must be go. Identifying x1 with the E in 
(2.6), we have the required rc:sult. 

Thus we conclude for the surface-tension problem discussed in 3 3, for example, 
that the value of 34-79 which we obtained is a lower bound for the critical Maran- 
goni number, with respect to infinite wavelength disturbances, for any basic tem- 
perature profile with a non-negative, non-increasing gradient. Further, we 
expect, on the basis of the data of Vidal & Acrivos (1968), that this value will be 
close to  being a lower bound when disturbances of arbitrary wavelength are 
considered. 

In  order to be able to say to what extent the results of this paper are typical 
of problems where the temperature boundary conditions are other than the con- 
stant-flux ones, further calidations involving extensive computation appear 
to be required. Experimental work to confirm the present results is needed. We 
suggest that using a dissolvecl substance (such as sugar), rather than heat, as the 
diffusing quantity should be convenient, especially as the condition of constant 
(mass) flux could then be iiatisfied without effort. It is encouraging that the 
smallest critical Rayleigh number (1 340) calculated by Currie (1967), which, 
by our argument, should be a lower bound on the critical Rayleigh number for 
heating (at a constant rate) from below with rigid boundaries, is in fact slightly 
less than the smallest value (about 1400) a t  which de Graaff & van der Held 
(1953) obtained convection. 
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